Selective formation of a stable μ -peroxo ferric heme-Cu^{II} complex from the corresponding μ -oxo Fe^{III}–Cu^{II} species with hydrogen peroxide[†]

Takefumi Chishiro, Yuichi Shimazaki, Fumito Tani and Yoshinori Naruta*

Received (in Cambridge, UK) 1st September 2004, Accepted 4th October 2004 First published as an Advance Article on the web 12th January 2005 DOI: 10.1039/b413275k

An oxo-bridged ferric heme-copper(II) complex, obtained by thermal transformation of the corresponding peroxo-bridged complex, was reacted with an equimolar amount of H_2O_2 to regenerate the μ -peroxo complex by a ligand exchange from oxo to peroxo, without the formation of a ferryl-oxo species or heme degradation as are observed in general ferric heme- H_2O_2 reactions.

In the catalytic dioxygen reduction of heme-copper oxidases including cytochrome c oxidase (CcO) , ferric heme-peroxo species are considered as important transients for the formation of a ferryl oxo intermediate from the initially formed heme-dioxygen adduct.2 However, it is still unclear whether the peroxo form is a ferric heme-hydroperoxo, heme-peroxo or heme- μ -peroxo-Cu²⁺ species.³ The synthetic model studies of CcO have indicated either the presence of a heme-hydroperoxo species during the electrochemical O_2 reduction,⁴ or the formation of μ -peroxo heme-copper dinuclear complexes.^{5,6} We have investigated the reaction of O_2 with the heme-linked copper dinuclear complex $[(TMP)Fe^H–$ $(5\text{MeTPA})\text{Cu}^{\text{I}}$ as a model of CcO, and recently reported the isolation and structure of a remarkably stable μ - η^2 : η^1 -peroxo complex, $[(TMP)Fe^{III}-(O₂)-(5MeTPA)Cu^{II}|BPh₄ (1).⁷ Therefore,$ we expected complex 1 to be generated by the reaction of hydrogen peroxide with the oxidized Fe^{III}–Cu^{II} complex of the same ligand as reported for many non-heme iron⁸ and copper⁹ complexes, although it is generally difficult to prepare stable heme-peroxo species by the reaction of ferric heme and H_2O_2 ^{2,10–13} In this report, we have performed the reaction of hydrogen peroxide with the corresponding μ -oxo heme-copper complex, $[(TMP)Fe^{III}-(O) (5\text{MeTPA})\text{Cu}^{\text{II}}$ | BPh₄ (2), and confirmed the formation of 1 spectroscopically. Since 2 was obtained from 1, the conversion of 2 to 1 could be regarded as the regeneration of the μ -peroxo heme-copper complex (Scheme 1).

The precursor μ -oxo complex 2 was prepared by the thermal transformation of the μ -peroxo complex 1 in CH₃CN at room temperature for several months, and was isolated by recrystallization from acetone as 2.2 (acetone) in 80% yield. \ddagger The UV–visible spectrum of 2 showed a Soret band at 442 nm, which was significantly red-shifted from that of 1 (420 nm), with new absorption bands at 560 and 596 nm (Fig. 1, dotted line). The ESI mass spectrum of 2 exhibited a peak at $m/z = 1232$ that is 16 amu smaller than that of the $[(TMP)Fe^{III}-(O_2)-(5MeTPA)Cu^{II}]^+$ cation

Scheme 1 Interconversion between 1 and 2.

Fig. 1 UV–vis spectra (CH₃CN, room temperature) of $[(TMP)Fe^{III}-(O)–$ (5MeTPA) Cu^{II}]BPh₄ (2, dotted line) and the resulting species after the addition of H_2O_2 to 2 (solid line). Inset: resonance Raman spectra of 1 (CH₃CN, -25 °C, λ_{ex} = 413.1 nm) formed by the reaction of 2 with (A) $H_2{}^{16}O_2$ and (B) $H_2{}^{18}O_2$.

in 1 ($m/z = 1248$).⁵ By isotopic substitution, [(TMP)Fe^{III}–(¹⁸O₂)– $(5\text{MeTPA})\text{Cu}^{\text{II}}$]BPh₄ in dry CH₃CN gave the ¹⁸O-labeled complex $2 \frac{m}{z} = 1234$, indicating that the oxygen atom of the peroxo ligand was incorporated in 2. ⁵ The oxo ligand is easily exchangable by water oxygen, since the treatment of the solution of ¹⁶O-labeled 2 with H_2 ¹⁸O rapidly generated ¹⁸O-labeled 2, as confirmed by mass spectra. The crystal structure of 2§ revealed that an oxo ligand bound to both iron and copper ions, and the Fe–O–Cu moiety had a near-linear structure (see ESI†), as is expected from those of previously reported μ -oxo heme-copper complexes.^{5,14} The M–O (M = Fe, Cu) distances in 2 (Fe–O = 1.758(3) \AA and

[{] Electronic supplementary information (ESI) available: ORTEP view of $[(TMP)Fe^{III}-(O)$ -(5MeTPA)Cu^{II}]⁺ in crystals of 2.3(acetone) drawn with the thermal ellipsoids at the 50% probability level and ESI mass spectra. See http://www.rsc.org/suppdata/cc/b4/b413275k/ *naruta@ms.ifoc.kyushu-u.ac.jp

Fig. 2 ¹H NMR spectra (20 °C, CD₂Cl₂) of (A) 1, (B) 2 and (C) a 1 : 1 mixture of 2 and H_2O_2 .

 $Cu-O = 1.856(3)$ Å, respectively) were significantly shorter than those in 1 (Fe–O = 2.031(4) and 1.890(6) Å, Cu–O = 1.915(5) Å), indicating the stronger interaction of metal ions with the oxo ligand than that with each oxygen atom of the peroxo ligand. The ¹H NMR spectrum (CD₂Cl₂, room temperature) of **2**, showing signals for pyridine protons at $\delta = -25.1$ and -14.5 ppm and those of pyrrole protons centered at $\delta = 65.1$ ppm (Fig. 2), was similar to those of previously reported μ -oxo heme-(TMPA)copper['] complexes.^{5,15} An overall $S = 2$ spin state for 2 was assigned (Evans NMR method, $\mu_{\text{eff}} = 4.8 \mu_{\text{B}}$) arising from an antiferromagnetic interaction between the copper(II) and highspin iron(III) ions through the bridging oxo ligand.

Addition of an equimolar amount of H_2O_2 to the CH₃CN solution of 2 at room temperature rapidly caused the absorption spectral change; the 442, 560 and 595 nm bands corresponding to 2 were changed to 420, 557 and 612 nm bands, respectively. The resulting spectrum is identical to that of 1 (Fig. 1, solid line). The ESI-MS of the resulting solution showed a new peak at $m/z = 1248$ corresponding to the $[(TMP)Fe^{III}-(^{16}O_2)-(5MeTPA)Cu^{II}]^{+}$ cation, and by using $H_2^{18}O_2$, an $m/z = 1252$ peak from the [(TMP)Fe^{III}– $(^{18}O_2)$ (5MeTPA)Cuⁿ]⁺ cation was observed (see ESI†). The resonance Raman spectrum (Fig. 1, inset) of this species is also similar to that of 1 in solution: a Raman band which was assigned to the O–O stretching vibration was observed $(v(^{16}O-^{16}O) = 790$ cm⁻¹) and shifted on isotopic substitution with $H_2^{18}O_2(v(^{18}O^{-18}O) = 747 \text{ cm}^{-1})$.⁷ In the ¹H NMR spectrum, the addition of H_2O_2 to 2 led to significant shifting of the signals of pyridine protons ($\delta = -17.1$ and -15.4 ppm) with a slight shift of the pyrrole protons ($\delta = 63.5$ ppm).^{5,15} These resonances were identical to those of 1 (Fig. 2). The spin state was also assigned as $S = 2$ (Evans method, $\mu_{\text{eff}} = 5.0 \mu_{\text{B}}$), indicating the antiferromagnetic coupling between the copper(II) ion and the high-spin iron(III) ion, mediated by the bridging peroxo ligand. Based on these results, we conclude that complex 1 is generated by the reaction of complex 2 with H_2O_2 (Scheme 1). Although ¹⁶O-bridged complex 2 was used in the ¹⁸O-labeled experiments, neither the mass peak $(m/z = 1250)$ nor the Raman band

corresponding to the scrambled peroxide species $(v(^{16}O^{-18}O))$ = 769 cm^{-1}) was observed. These observations indicate that both oxygen atoms of the peroxo ligand originate from hydrogen peroxide, not from the oxo ligand in 2. Thus, this reaction can be considered as a ligand exchange.

In general, the addition of H_2O_2 to a ferric heme generates the heme-hydroperoxo adduct, which is observed only as a transient species with very low stability¹⁰ and followed by the rapid formation of a ferryl oxo species^{2,10–12} and/or the heme degradation reaction.¹³ In contrast, the reaction of 2 with H_2O_2 showed neither the generation of such ferryl oxo species nor heme degradation, because the resulting peroxo-bridged species 1 is highly stable. The peroxo complex 1 prepared in this manner again gradually transformed to the μ -oxo complex 2, indicating the reversible interconversion between 1 and 2 (Scheme 1).

In summary, we obtained the oxo-bridged heme-copper complex 2 by the thermal transformation of 1. Complex 2 reacted with hydrogen peroxide to regenerate the μ -peroxo complex 1 by ligand exchange from oxo to peroxo, confirmed by spectroscopic methods. This is the first example of a stable peroxo species generated by H_2O_2 and a ferric heme complex. This result indicates that our (TMP)Fe–(5MeTPA)Cu complex prefers the stable peroxo-bridged form. Further investigations are in progress in our laboratory.

We are thankful for financial support from Grants-in-Aid for Science Research on Priority Areas (#15036254) from MEXT and for Scientific Research (A) (#14204073) from JSPS, Takeda Science Foundation, and P&P project, Green Chemistry, of Kyushu University.

Takefumi Chishiro, Yuichi Shimazaki, Fumito Tani and Yoshinori Naruta*

Institute for Materials Chemistry and Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan. E-mail: naruta@ms.ifoc.kyushu-u.ac.jp; Fax: +81-92-642-2715; Tel: +81-92-642-2731

Notes and references

 \ddagger Elemental analysis for 2.2(acetone). Found (%): C 74.38, H 6.03, N 7.71; Calcd for C104H99 O4N9FeCuB (%): C 74.84, H 5.98, N 7.55.

§ Crystal data for 2.3(acetone): C₁₀₇H₁₀₅O₅N₉FeCuB, reddish-purple crystals with size $0.08 \times 0.14 \times 0.27$ mm, triclinic, $a = 13.035(6)$, $b = 14.360(6)$, $c = 25.42(1)$ Å, $\alpha = 75.13(3)$, $\beta = 89.45(5)$, $\gamma = 83.78(4)$ °, $V = 4570(3)$ Å³, space group $P\overline{1}$, $Z = 2$, $F(000) = 1820$, $d_{\text{calc}} = 1.255$ g cm⁻³ $V = 4570(3)$ Å³, space group P1, Z = 2, $F(000) = 1820$, $d_{\text{calc}} = 1.255$ g cm⁻³, $\mu(\text{Mo-K}\alpha) = 0.451$ mm⁻¹. The data were collected $(6.0 \le 2\theta \le 55.0^{\circ})$ at -140 °C on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo–K α ($\lambda = 0.71075$ Å) radiation; 42538 reflections collected, 20528 used ($R_{\text{int}} = 0.119$) and 1118 parameters. $R1 = 0.080$ for 8721 $I > 2\sigma(I)$ data, wR2 = 0.168 for all data. An additional acetone molecule may be lost in vacuo before the elemental analysis. The final difference Fourier map did not show any significant features except in the proximity of the metal (iron and copper) sites. CCDC 248588. See http:// www.rsc.org/suppdata/cc/b4/b413275k/ for crystallographic data in .cif or other electronic format.

 \blacksquare Abbreviation used: TMPA = tris(2-pyridylmethyl)amine.

- 1 M. M. Pereira, M. Santana and M. Teixeira, Biochim. Biophys. Acta, 2001, 1505, 185.
- 2 S. Ferguson-Miller and G. T. Babcock, Chem. Rev., 1996, 96, 2889.
- 3 M. R. A. Blomberg, P. E. M. Siegbahn, G. T. Babcock and M. Wikström, J. Am. Chem. Soc., 2000, 122, 12848; M. R. A. Blomberg and P. E. M. Siegbahn, Inorg. Chem., 2003, 42, 5231.
- 4 J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev., 2004, 104, 561; H. Shin, D.-H. Lee, C. Kang and K. D. Karlin, Electrochim. Acta, 2003, 48, 4077.
- 5 E. Kim, E. E. Chufán, K. Kamaraj and K. D. Karlin, Chem. Rev., 2004, 104, 1077; E. E. Chufán and K. D. Karlin, J. Am. Chem. Soc., 2003, 125, 16160.
- 6 T. Sasaki, N. Nakamura and Y. Naruta, Chem. Lett., 1998, 351; Y. Naruta, T. Sasaki, F. Tani, Y. Tachi, N. Kawato and N. Nakamura, J. Inorg. Biochem., 2001, 83, 239.
- 7 T. Chishiro, Y. Shimazaki, F. Tani, Y. Tachi, Y. Naruta, S. Karasawa, S. Hayami and Y. Maeda, Angew. Chem., Int. Ed., 2003, 42, 2788.
- 8 M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Jr., Chem. Rev., 2004, 104, 939.
- 9 E. A. Lewis and W. B. Tolman, Chem. Rev., 2004, 104, 1047; L. M. Mirica, X. Ottenwaelder and T. D. P. Stack, Chem. Rev., 2004, 104, 1013.
- 10 H. K. Baek and H. E. Van Wart, Biochemistry, 1989, 28, 5714.
- 11 M. Sono, M. P. Roach, E. D. Oulter and J. H. Dawson, Chem. Rev., 1996, 96, 2841.
- 12 D. A. Proshlyakov, T. Ogura, K. Shinzawa-Itoh, S. Yoshikawa and T. Kitagawa, Biochemistry, 1996, 35, 8580.
- 13 P. R. Ortiz de Montellano and K. Auclair, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, California, USA, 2003, vol. 12, p. 183; P. R. Ortiz de Montellano, Acc. Chem. Res., 1998, 31, 543; T. N. St. Claire and A. L. Balch, Inorg. Chem., 1999, 38, 684.
- 14 A. Nanthakumar, S. Fox, N. N. Murthy and K. D. Karlin, J. Am. Chem. Soc., 1993, 115, 8513; T. D. Ju, R. A. Ghiladi, D.-H. Lee, G. P. F. van Strijdonck, A. S. Woods, R. J. Cotter, J. V. G. Young and K. D. Karlin, Inorg. Chem., 1999, 38, 2244.
- 15 R. A. Ghiladi, T. D. Ju, D.-H. Lee, P. Moënne-Loccoz, S. Kaderli, Y.-M. Neuhold, A. D. Zuberbühler, A. S. Woods, R. J. Cotter and K. D. Karlin, J. Am. Chem. Soc., 1999, 121, 9885; R. A. Ghiladi, K. R. Hatwell, K. D. Karlin, H.-W. Huang, P. Moënne-Loccoz, C. Krebs, B. H. Huynh, L. A. Marzilli, R. J. Cotter, S. Kaderli and A. D. Zuberbühler, *J. Am. Chem. Soc.*, 2001, 123, 6183.